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Abstract—In this paper, a quasi-multiple medium (QMM)
method based on the direct boundary element method (BEM) is
presented to extract the capacitance of three-dimensional (3-D)
very large scale integration interconnects with multiple dielectrics.
QMM decomposes each dielectric layer into a few fictitious
medium blocks, and generates an overall coefficient matrix with
high sparsity. With the storage technique of a sparse blocked
matrix and iterative equation solver generalized minimal residual,
the QMM can greatly reduce the CPU time and memory usage
of large-scale direct BEM computation. Numerical examples of
3-D multilayered and multiconductor structures cut from actual
layout show the efficiency of the QMM method for capacitance
extraction. We also compared the QMM accelerated BEM with
geometry independent measured equation of invariance (GIMEI)
and Zhu’s overlapping domain decomposition method (ODDM).
The results show that the CPU time consumed by the above-men-
tioned methods is on the same order, and the QMM method is
superior to the others for fairly large and complex structures.
While in memory usage, the QMM accelerated BEM is superior
to GIMEI, but inferior to ODDM.

Index Terms—Capacitance extraction, direct boundary
element method (BEM), quasi-multiple medium (QMM) method,
three-dimensional (3-D) very large scale integration (VLSI)
interconnects.

I. INTRODUCTION

I N VERY LARGE scale integration (VLSI) circuits, with
rapid increase of device density and working frequency, the

electrical characteristics of interconnects are becoming more
important factors governing the circuit performances such as
delay, power consumption, reliability, etc. This has increased
the interest in efficient methods for calculating electrical param-
eters of interconnects.

Since the mid-1990s, many efficient numerical methods
have been proposed to calculate the capacitance matrix of inter-
connects [1]–[11], [18]. They can be classified as the indirect
boundary element method (BEM) [1]–[4], direct BEM [5],
[6], the method of the measured equation of invariance (MEI)
[7], [8], [18], and several kinds of semianalytical approaches
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[9]–[11]. In both the indirect and direct BEM, only surfaces of
three-dimensional (3-D) objects are discretized, and a smaller
system of linear equations is obtained. The MEI technique can
terminate the meshes very close to the object boundary and still
preserves the sparsity of the finite-difference (FD) equations.
The geometry independent measured equation of invariance
(GIMEI) is proposed for the capacitance extraction of the
general two-dimensional (2-D) and 3-D interconnects by using
free-space Green’s function only [8]. The MEI method has now
been developed to on-surface level, where a surface mesh is used
to keep the number of unknowns in minimum [18]. The semi-
analytical approaches usually decompose the simulated region
into subregions and analyze them separately. Many subregions
with simple geometry can be analyzed analytically, thus, the
domains that have to be analyzed numerically are reduced to the
least. This dramatically reduces memory and computing time
[10]. The overlapping domain decomposition method (ODDM)
in [10] is one of these approaches with high performance. In ad-
dition, many extraction tools such as Avant!’s Raphael, Ansoft’s
SpiceLink, and the Massachusetts Institute of Technology’s
(MIT’s) FastCap have been available in practical use.

An interconnect capacitor, which exists in reality, is defined
in a finite region and described by the Laplace equation with
the mixed boundary conditions [2]. It means that the finite Neu-
mann boundary should be considered. In fact, several published
algorithms are all based on the capacitor model with finite Neu-
mann boundaries [2], [5], [9]–[11]. For this capacitor model,
the direct BEM is more suitable to extract the capacitance ma-
trix than the indirect BEM. This is because there are two vari-
ables of electrical potential and its normal derivative in the direct
boundary integral equation (BIE) [12], [13]. Compared with the
semianalytical approaches proposed by Hong et al. [9] and Zhu
et al. [10], [11], the direct BEM can deal with more complicated
3-D structure of the interconnects. In fact, the geometry that the
semianalytical approaches can deal with has some limitations
[8]. However, the direct BEM generally leads to a nonsymmetric
coefficient matrix and the matrix for a single dielectric region is
dense. This causes a great deal of time and memory consump-
tion in forming and solving the system of linear equations [13].

In this paper, a new quasi-multiple medium (QMM) method
is proposed to accelerate the direct BEM computation. It utilizes
the localization character of the direct BEM to transfer the coef-
ficient matrix into a highly sparse block matrix. With the tech-
nology of storing a sparse block matrix and the iterative equation
solver, the QMM method can greatly reduce the CPU time and
memory usage of large-scale direct BEM computation. We have
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applied the QMM accelerated BEM to actual 3-D interconnect
capacitance extraction. Numerical experiments of 3-D extrac-
tion are designed to demonstrate the computational efficiency
of our method. The results are in close agreement with those
of SpiceLink, FastCap, or Raphael, but the computing time and
memory size used by our method are at least ten times less than
those used by them. We also compared a QMM accelerated
BEM with the ODDM in [10] and GIMEI in [8]. The results
show that our method is superior to them in CPU time, espe-
cially for fairly large and complex structures. While in memory
usage, the QMM accelerated BEM is superior to the GIMEI, but
inferior to the ODDM.

The remainder of this paper is organized as follows. Section II
outlines the direct BEM and related formulas to calculate inter-
connect capacitance. The principle of the QMM method is pre-
sented in Section III. In Section IV, some important aspects of
the QMM accelerated BEM are discussed for actual 3-D capac-
itance extraction. The numerical results are presented in Sec-
tion V. Finally, we give conclusions in Section VI.

II. DIRECT BEM FOR CAPACITANCE EXTRACTION WITH

MULTIPLE DIELECTRICS

A. Fundamental Formulation

For an interconnect capacitor with conductors embedded
in dielectric layers, an approach, setting the th conductor
to 1 V and the rest to 0 V, is used to determine the self and
coupling capacitances of the th conductor. This procedure can
be repeated times to get the capacitance matrix [2]. In a
setting of bias voltages, the conductor of 1 V is called the master
conductor, and the others are called the environment conductors.

Within the 3-D domain of the th dielectric denoted by , the
electrical potential is governed by the Laplace equation with
mixed boundary conditions

in

in

on

(1)

where is the Dirichlet boundary (surfaces of conductors),
where is known and determined by the bias voltage, and
is the Neumann boundary (outer surfaces of dielectrics), where
the normal electrical field intensity is supposed to be zero.
stands for the unit vector outward normal to the boundary.

Besides, and fulfill the compatibility equations along the
interface of two adjacent dielectrics and as follows:

(2)

where and stand for the permittivities of dielectric and .
With the fundamental solution as the weighting function, the
Laplace equations in (1) are transformed into following direct
BIEs by the Green’s formula [13]

(3)

where is the electrical potential at source point , is a con-
stant dependent on the boundary geometry near to the point ,

and is the derivative of along the outward normal direc-
tion of boundary .

Employing constant quadrilateral elements and evaluating the
direct BIE at collocation points, one for an element, the dis-
cretized BIEs for the th dielectric are obtained as follows:

(4)

where is the number of the boundary elements in dielectric
, and is the th element.

B. Integration and Equation Solution

The evaluation of integrals in (4) is the most time-consuming
part of boundary element algorithms, particularly for 3-D anal-
ysis [5], [17]. They can be classified as the singular integrals
and nonsingular integrals. When the source point is on the
same element where the integral is taken, i.e., in (4),
it is singular integral, otherwise it is nonsingular integral. For
the singular integral, the analytical integral method adopting
local polar coordinates is effective [16]. The Gauss–Legendre
integration scheme with adaptive determination of integration
points is employed to calculate the nonsingular integral [5],
[17]. However, for the nearly singular integrals, when the
source point is close to the element where the integral is taken,
the order of Gauss–Legendre integration is still very high. Thus,
reducing the calculating time of the nearly singular integrals
becomes very important for direct BEM computation.

We proposed a semianalytical method to deal with these nearly
singular integrals. With application of the primitive function,
the 2-D integral taken on a trapezoid element is converted into
a one-dimensional Gauss–Legendre integration (see the Ap-
pendix). Compared with the 2-D Gauss-Legendre integration,
the number of integration points is reduced drastically so that
higher computational speed and accuracy are achieved.

After the integration, a matrix equation for each dielectric is
generated as follows:

(5)

where is the column vector of electrical potential on the
boundary of the dielectric , is the column vector of the
normal electrical field intensity, and and are the corre-
sponding coefficient matrixes, respectively. Both vectors of
and have an order of .

Matrix equations (5) can be put together utilizing the compat-
ibility equations (2). We then reorganize the equation system,
such that all unknown variables are collected in a left-hand side
vector, while a corresponding right-hand-side vector is obtained
by multiplying matrix entries with the known values of and .
This gives

(6)

The coefficient matrix is a large nonsymmetric one for
the 3-D problem. The Krylove sub-space iterative methods are
efficient to solve them. A preconditioned generalized minimal
residual (GMRES) algorithm is used here [14]. After solution
of (6), the self-capacitances and coupling capacitances can be
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Fig. 1. (a) 2-D problem with two dielectrics. (b) Corresponding coefficient
matrix, where the gray blocks denote nonzero entries.

evaluated by the integral of the normal electrical-field intensity
on the conductor surfaces [1], [5].

III. PRINCIPLE OF THE QMM METHOD

A. Localization of Direct BEM

From (4), we can see that, in each discretized BIE, all dis-
cretized variables are on the boundary elements of one dielectric
region. Thus, there are direct interactions among the boundary
elements in the same dielectric, which result in nonzero coeffi-
cients in the overall equation. We call this the localization char-
acter of the direct BEM.

In the linear system (6), the coefficient matrix reflects the
distribution of interactions among all boundary elements. If
there is the direct interaction between two elements, nonzero
entries are formed by the integrals taken on one of the elements
with the source point on the other. Otherwise, when the source
point and discrete variable are on the elements without direct
interaction, i.e., not involved in a same dielectric, zero entries
are formed in the matrix . For a problem with multiple
dielectrics, the localization of the direct BEM makes matrix
sparse, from which we could benefit while storing and solving
the system of the algebraic equation (6). In Fig. 1, we show a
typical capacitor with two dielectrics and the corresponding
matrix generated by the direct BEM, where the nonzero
entries and location of discrete variables are indicated.

B. QMM Method

The QMM method takes full advantage of the localization
character of the direct BEM. A single dielectric with permit-
tivity is regarded as a composition of fictitious medium
blocks, whose permittivities are all the same as , as shown in
Fig. 2. Thus, the problem with the single medium is transferred
into a problem with some fictitious mediums. Due to the lo-
calization character, the dense coefficient matrix for the single
medium problem is converted into a sparse one for the problem
with multiple mediums.

With suitable decomposition of the single dielectric, the re-
sulting coefficient matrix will become one with much sparsity
so that computational speed-up is available. With the storage
technique of the sparse blocked matrix and iterative equation
solvers such as the GMRES algorithm, the computing time and
memory usage for the original single medium problem will be
greatly reduced. We call this the QMM method.

Therefore, the QMM method includes the following three
main points. Firstly, a single dielectric is regarded as a composi-
tion of some fictitious mediums. Secondly, a suitable strategy of

Fig. 2. Single dielectric with a Cartesian coordinate system is cut into Q =

Q � Q � Q fictitious mediums.

decomposition is considered to make the resulting BEM coeffi-
cient matrix with much sparsity. Lastly, the technique of storing
the sparse matrix and iterative equation solver are used to ben-
efit from the matrix sparsity.

It should be pointed out that the QMM method adds some
unknowns to the overall problem, which are introduced on the
additional fictitious interfaces of QMMs. With suitable decom-
position of dielectric regions, these unknowns would account for
a little percentage of total unknowns since most boundary ele-
ments are located on conductor surfaces. Thus, compared with
the conventional BEM, the nonzero entries of matrix are much
fewer in the QMM method. Since the Krylove sub-space iter-
ative methods are usually used in 3-D capacitance extraction,
fewer nonzero matrix entries mean less memory usage and com-
puting time by using the technique of the storing sparse matrix.
Actual cases of 3-D capacitance extraction verified this analysis.

C. Performance Analysis of QMM for Actual Capacitance
Extraction

The QMM method has been applied in the extraction of actual
3-D multilayered interconnect capacitance. Here, each dielec-
tric layer is decomposed into a few fictitious medium blocks,
the overall coefficient matrix becomes much sparser, and great
computational acceleration can be expected. The CPU time and
memory usage of QMM for actual capacitance extraction will
be analyzed as follows.

The total CPU time used in 3-D interconnect capacitance ex-
traction with the direct BEM can be expressed as follows:

(7)

where is the time spent in generation of the coefficients
in (6), is the time spent in solution of (6), and stands
for the time spent in other supplementary procedures, including
input of the structure data and partition of boundary elements.
Generally speaking, the sum of and accounts for over
90% of the total CPU time .

Only nonzero matrix entries need to be computed and stored,
thus,

(8)

where stands for the number of nonzero entries of matrix
. In the phase of the equation solution, we use the Krylove

sub-space iterative methods such as GMRES [14], in which the
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main manipulation of each iteration is once matrix–vector mul-
tiplication. Thus, we have

(9)

where stands for the number of iterations.
For 3-D capacitance extraction, the coefficient matrix is

usually a nonsymmetric sparse matrix with a large order, e.g.,
larger than 1000. A good preconditioning matrix should also
be selected for the GMRES algorithm to quicken convergence.
Properly organizing the discretized BIEs, the diagonal precon-
ditioner can bring quick convergence to the GMRES solver,
which will be discussed further in Section IV-D. In this case,
the number of iterations is much less than the parameter in
(9). Therefore, the number of nonzero matrix entries is very
significant for the total computing time.

If we ignore the influence of and assume the does not
change much while using the QMM method, we will find out
that the fewer nonzero entries there are, the less CPU time will
be taken. In formulation, the speed-up ratio of the BEM compu-
tation with QMM acceleration is expressed as

(10)

where and stand for the numbers of nonzero entries of ma-
trix in the BEM computation without QMM acceleration and
that with QMM acceleration, respectively. This expression re-
veals that the ratio of number of nonzero matrix entries approx-
imately equals to the speed-up ratio of the QMM method. Thus,
when the QMM method is applied to actual 3-D capacitance ex-
traction, its efficiency is mainly determined by the reduction of
the nonzero matrix entries.

In our implementation of BEM computation, the memory
usage consists of two main parts. One is the memory needed
to store the coefficient matrix, denoted by and the other
is used to store the orthogonal basis vectors in the GMRES al-
gorithm, denoted by . With the technology of storing the
sparse matrix, we get

(11)

which means that is proportional to the number of the
nonzero matrix entries. In the GMRES algorithm, a new orthog-
onal basis vector is constructed in each iterative step. Thus, we
have

(12)

where is the number of all unknowns and is the number
of iterations. Since double precision arithmetic is required for
only the work comprising the orthogonalization process [19],
we store the matrix in single precision and the basis vectors
in double precision. This storing scheme of mixed precision re-
sults in less memory storage than the wholly double precision
version, while high computational accuracy is preserved [19].

Using the QMM method, is reduced by the same ratio
with the reduction of nonzero matrix entries. On the other hand,

is increased because more unknowns are involved. Usu-
ally is much larger than . Thus, if the unknowns
are not increased much, the total memory usage will be re-
duced while using the QMM method. This is verified by ac-
tual examples of 3-D capacitance extraction, for which several
times of reduction in memory could be found while using the

QMM method. It should also be pointed out that the increase
of memory usage would be possible in the case with unsuitable
QMM decomposition, where too many fictitious interfaces of
QMMs caused a great increase of unknowns.

IV. QMM ACCELERATED BEM FOR ACTUAL INTERCONNECT

CAPACITANCE EXTRACTION

In this section, we firstly give the algorithm description of
the QMM accelerated BEM. The strategy for decomposition of
dielectric layers and element partition is given later. Lastly, we
discuss the organization of discretized BEM equations.

A. Algorithm Description

An interconnect capacitor cut from the real layout usually
is a stratified structure, and has many conductors embedded
in multiple stratified dielectrics. In order to apply the QMM
method to actual 3-D interconnect capacitance extraction, we
need to decompose the original dielectric layers into some fic-
titious medium blocks. We then use the direct BEM to calcu-
late the capacitance with the new multidielectric structure. The
major steps of our QMM accelerated algorithm are listed as fol-
lows.

Step 1) Read in the data describing a 3-D interconnect ca-
pacitor.

Step 2) Set element-partitioning gaps for each boundary sur-
face.

Step 3)

For to
Decompose the th dielectric into

fictitious mediums;
For to

ConducterNumberInLayer[ ]
If (the th conductor inter-

sect additional interfaces of fictitious
mediums)

Decompose conductor ac-
cording to the decomposition of dielec-
tric ;

Set containing relation-
ship of conductor blocks and fictitious
medium blocks;

EndIf
EndFor

EndFor

Step 4) Organize medium blocks and conductors blocks into
new object lists.

Step 5) Partition all boundary surfaces of the new multidi-
electric structure.

Step 6) Calculate integrals in (4) and form (6).
Step 7) Solve (6) with the preconditioned GMRES and

output the capacitance results.

B. Decomposition of Dielectrics

In order to decrease the additional efforts brought by the
QMM decomposition, we adopt a simple strategy. Since every
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Fig. 3. Typical 3-D interconnect capacitor with five dielectrics is cut into 3�
2 structures.

dielectric layer is cuboid, and each surface of it parallels to one
of the three coordinate planes in the 3-D Cartesian coordinate
system, we use two groups of planes parallel to the -
and -planes, respectively, to cut all dielectric layers into
pieces (Fig. 3). Thus, in the top view of the 3-D interconnect
capacitor, each original dielectric is decomposed into an array
of fictitious medium blocks. We call ( ) the QMM
cutting number.

The conductor distribution of actual 3-D interconnect capac-
itor differs in thousands of ways, and the cutting position is
not as important as the number of fictitious mediums for the
QMM’s efficiency. Thus, a strategy of proportional-spacing cut-
ting is adopted, i.e., fictitious planes perpendicular to the

-axis and fictitious planes perpendicular to the -axis
cut the dielectrics uniformly. In Fig. 3, we show a five-layered
interconnect capacitor to which a 3 2 QMM cutting is per-
formed.

Now, every dielectric layer is decomposed into
fictitious medium blocks. Neither of little value and great value
of can bring the best speed-up of QMM computation. Mod-
erate values of and should be chosen. Here, an empir-
ical formula is obtained from a great deal of calculation for
actual interconnect capacitors according to their dimensions.
Finding a way to dynamically determine the optimal QMM cut-
ting number will be explored and discussed in the future.

C. Boundary Element Partition

In applications of the BEM, the partition of boundary ele-
ments is very important. It affects both speed and accuracy of
BEM computation. In this paper, we adopt a strategy of nonuni-
form density partitioning. Thus, we partition the boundaries into
fewer elements without loss of accuracy.

There are two kinds of boundary surfaces in the actual in-
terconnect structure. Some surfaces can be treated as trapezoid
planes without holes, and the other can be treated as planes with
some polygon holes. Using the scan-line algorithm, a surface
with holes can be further treated as a composition of smaller
trapezoids [15]. Hence, both kinds of boundary surfaces consist
of the trapezoids, which are called mother elements and need to
be further divided into the boundary elements.

According to the electrostatic analysis, the electrical-field
intensity on boundary surfaces of conductors, especially the

Fig. 4. Boundary element partition of one layer interface in the capacitor
shown in Fig. 3.

master conductor, generally is the largest in the simulated
region. Besides, the electrical-field intensity at boundary
points near the master conductor is also larger. Thus, for each
mother element to be partitioned, the mesh number along two
directions should be deferent according to its type, position,
size, etc. The larger the electrical field intensity on a mother
element, the more densely it should be partitioned.

For the additional fictitious surfaces introduced by the QMM,
we also use different partition density according to the above
electrostatic analysis. For each dielectric layer, the partition den-
sity of fictitious surfaces is different. In the dielectric layer con-
taining the master conductor, fictitious surfaces are partitioned
more densely. While in the dielectric layers far from the master
layer, the partition density can be much less.

In the QMM accelerated BEM, the interface of the dielectric
layer is cut into small pieces, and some fictitious surfaces (which
may be surfaces with holes) are produced. Thus, the partition of
the boundary element becomes more complex than that without
QMM accelerating. In Fig. 4, the partition of the bottom surface
of the master dielectric layer in Fig. 3 is shown. This complex
element partition of nonuniform density brings much difficulty
to the more detailed discussion about the influence of the QMM
cutting number on computing time.

D. Organization of the Coefficient Matrix

Organization of the coefficient matrix in multidielectric
BEM computation involves the sorting order of unknowns and
source points and the storage structure. The order of unknowns
determines the arrangement of matrix columns, whereas the
order of source points determines the arrangement of matrix
rows. We make the order of source points consistent with that
of unknowns so that the diagonal entries of the matrix are
obtained by the singular integrals. Since the singular integral
results in a nonzero entry with larger absolute value, the
diagonal preconditioner can bring quick convergence to the
GMRES solver.

How to arrange the unknowns or source points, which de-
termines the distribution of nonzero entries in the matrix ,
is very important for the QMM accelerated BEM. Using the
QMM method, the regions of dielectrics are at least several
times more than the original structure without fictitious cutting.
For example, a three-dielectric capacitor contains 12 dielectric
regions, while 2 2 QMM cutting is applied. If the unknowns
were arranged without serious consideration, the nonzero en-
tries would disperse in the coefficient matrix. Also, the nonzero
matrix blocks would increase much faster than the dielectric re-
gions. This would cause a lot of additional CPU time spent on



114 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 1, JANUARY 2003

Fig. 5. Matrix expression of the unknown order.

switching manipulation among matrix blocks and locating of
nonzero entries in each matrix–vector multiplication. The effi-
ciency of the QMM method would be weakened.

The arrangement of unknowns in the multiregional BEM
computation is discussed in [5] and [12] for the direct equa-
tion solver. With reference to them, we propose a matrix
expression of the unknown order suitable for any complex
multiple-medium structure. By this arrangement, the number of
nonzero blocks is deceased to the least, and their distribution is
so regular that an efficient storage structure can be easily found
to save the additional CPU time.

The matrix expression of the unknown order is introduced
below. For the th dielectric region, unknowns in discretized
BIEs can be classified into the following three types:

1) on the Dirichlet boundary and on the Neumann
boundary, denoted by ;

2) on the dielectric interface, denoted by (the th di-
electric shares an interface with dielectric );

3) on dielectric interface, denoted by (the meaning of
is the same as that in 2).

due to the compatibility of and along interfaces [see (2)],
and can be represented only by ( ), while

and can be represented by ( ). The order of
unknowns follows the rules below, and is expressed by a matrix,
as shown in Fig. 5.

1) All possible types of unknowns are arranged in
an matrix ( is the number of dielectric regions).

2) Entries on the main diagonal are of the type , while en-
tries in upper triangle are of type and lower triangle are
of type .

3) The subscript of each matrix entry is the same with its
row–column position.

4) From left to right in the first row, and so on, row by row
(i.e., follow the arrow lines), we get the order of all un-
knowns.

Using this order of unknowns and the corresponding order
of source points, the coefficient matrix for the two-dielectric
problem in Fig. 1 is shown in Fig. 6(a), where the nonzero
entries are distributed more regularly than that in Fig. 1(b).
Fig. 6(b) shows the nonzero block distribution for a three-di-
electric capacitor applied 2 2 QMM cutting, under our matrix
organization. In this case, there are 50 nonzero blocks after
merging. While by another arrangement, the number would be
404. It could be proven that our method produces the fewest

Fig. 6. Distribution of the nonzero matrix entries for: (a) the two-dielectric
problem in Fig. 1 and (b) a three-dielectric capacitor applied 2 � 2 QMM
cutting.

Fig. 7. Storing structure of the coefficient matrix.

nonzero blocks in the coefficient matrix. According to the
regular distribution of nonzero matrix entries, a length-varied
2-D array is designed to store the coefficient matrix (Fig. 7).
It has rows, and the cells in the th row are one more than
the number of interfaces related to dielectric . Each cell is a
MAT_BLOCK structure, which includes a 2-D array to store a
nonzero matrix block and its position information. Experiments
reveal that our organization of the coefficient matrix effectively
reduces the additional manipulations in the equation solution
for QMM accelerated BEM computation, and ensures the
nearly linear relationship between the CPU time spent with the
equation solution and the number of nonzero matrix entries.

V. NUMERICAL RESULTS

In this section, the QMM accelerated BEM is used to analyze
several 3-D structures. The results are compared with those in
[8] and [10]. Lastly, three large 3-D cases cut from real design
are used to depict the speed-up ability of the QMM method,
whose computational results are compared with Raphael. In our
BEM programs, the stopping criteria of the GMRES is set to be
1.0 10 .
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Fig. 8. 1 � 1 cross over a ground plane.

A. Series of 1 1 Crossover

The structure is gotten from [8] and shown in Fig. 8, where a
1 1 cross is immersed in five dielectric layers with a ground
plane at the very bottom of the structure. The height of each
dielectric layer is 1 m. Each metal line has the width of 1 m,
and the two lines have the same length m. They are also both
overlapped in the middle of the other line. The lower metal is
numbered one, while the higher is numbered two. The dielectric
relative permittivities are all the same. It is worth noting that, in
[8], the dielectric permittivity given for this structure, i.e., 3.9, is
impossible. By calculating the structures with FastCap [1] and
Raphael, it is found that the permittivity should be 1.0, not 3.9.

With the line length taking the value of 4, 5, 7, and 10,
the structures are computed by GIMEI, FastCap, Raphael,
and the QMM accelerated BEM. The results of the GIMEI
are obtained from [8]. Since, at the present, our method can
only handle problem with a finite Neumann boundary, four
Neumann boundaries are added far around the crossover while
using the QMM accelerated BEM to compute the structures.
The simulated region defined by the finite Neumann bound-
aries has a length of 30 m and a width of 30 m, and the
crossover is placed at its center. This makes the accurate value
of capacitance close to that in the infinite region [2], which
is handled by the GIMEI. In order to get the capacitance
matrix, the program of the QMM accelerated BEM is run twice
with two settings of bias voltages. A 3 3 QMM cutting is
applied here. Table I shows the results of capacitance ,
computed by different methods. The discrepancy between the
results obtained with our method and other methods is within
5%. In a SunSparc workstation 20, the CPU time and memory
size used by the GIMEI, FastCap, and QMM accelerated BEM
are shown in Table II (since the computing environment of
Raphael is different, the data of Raphael are not listed). The
CPU time consumed by the GIMEI and our method is on the
same order, and the memories used by the GIMEI are about
six times more. With length increased from four to ten, the
computing time of the GIMEI increases more than two times,
whereas that of the QMM accelerated BEM increases only 30%
or so. The QMM accelerated BEM uses an order of magnitude
of less computing time and memory usage than FastCap.

B. 3-D Interconnect with One Straight Line Over One Bend

The structure is shown in Fig. 9 and the top view of the
layer with a straight line and the layer with a bend is shown in
Fig. 10(a) and (b), respectively. The size of the cross section of

each conductor is 1 1 (unit in micrometers). Counted from the
bottom, the thickness of every layer is 1, 1, 1, 1, 1, and 2 (unit
in micrometers), the relative permittivities of the dielectrics are
2, 4, 4, 4, 6, and 6. Other geometrical parameters are shown in
Fig. 10.

The capacitance matrices calculated by the SpiceLink,
ODDM, and our method are shown in Table III. The results
of first two methods are provided by [10]. The discrepancy
between the results obtained with SpiceLink and our method is
within 5% (except that for is approximately 5.8%). In the
QMM accelerated BEM, 3 3 QMM cutting is applied. Our
BEM program is run twice with two settings of bias voltages to
get the capacitance matrix. There are 1805 and 1811 discretized
boundary elements, respectively, in the two calculations. In the
SunSparc workstation 20, the CPU time and memory size used
by these algorithms are also shown in Table III. From it, we
can see that the computation resources used by SpiceLink are
about ten times those used by the QMM accelerated BEM. The
CPU time consumed by the ODDM and our method is on the
same order, and the memory used by our method is about five
times that used by the ODDM.

C. Four Conductor Crossover Above Two Bends Embedded in
Seven Dielectric Layers

The structure is shown in Fig. 11. The size of every straight
line is 1 1 13, the gap between conductors 3 and 4, as well
as conductors 5 and 6, is 3. The distance between the straight
line and the Neumann boundary is 4. The size of the cross sec-
tion of every bend is 1 1, other geometric parameters of the
bends are shown in Fig. 12. Counted from the bottom, the thick-
ness of every dielectric layer is 1, 1, 2, 1, 1, 1, and 1. All length
parameters above are in unit of micrometers. The relative per-
mittivity of every layer is 2, 3, 3, 4, 4, 5, and 5.

We have calculated the capacitance matrix by the QMM ac-
celerated BEM, and the corresponding results of SpiceLink and
the ODDM are provided by [10]. Only the diagonal entries of the
capacitance matrices are presented in Table IV. The discrepancy
among the results obtained with three methods is within 2%. In
the QMM accelerated BEM, 3 3 cutting is performed, and the
program is run six times with different settings of bias voltages.
There are boundary elements from 2277 to 2575 in these six
computations. In the SunSparc workstation 20, the CPU time
and memory size used by these methods are shown in Table IV.
Therefore, the CPU time used by SpiceLink is 20 times more
than that used by the QMM accelerated BEM. The CPU time
consumed by the ODDM is about two times that consumed by
our method.

Comparing the CPU time and memory size listed in Table III
and IV, we find that, when the interconnect structure becomes
complicated with embedded conductors increased from two
to six, the computing time of the ODDM increases by ap-
proximately nine times, whereas that of the QMM accelerated
BEM only increases by three times. The time consumed by our
method is less than that by the ODDM for the more complicated
example. Therefore, the QMM accelerated BEM is superior
to the ODDM in CPU time, especially for fairly large and
complex structures. In both Table III and IV, the memory used
by the QMM is larger than that used by the ODDM. This is
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TABLE I
CAPACITANCE MATRIX CALCULATED BY THE GIMEI, FASTCAP, RAPHAEL, AND OUR METHOD (IN ATTOFARADS)

TABLE II
COMPARISON OF CPU TIME AND MEMORY USAGE FOR THE GIMEI, FASTCAP, AND OUR METHOD

Fig. 9. One straight line over one bend.

Fig. 10. Top view of the layers with conductors in Fig. 9, a = 9, b = 8.
(a) Layer with a straight line, S1 = 3, S2 = 5. (b) Layer with a bend, h1 =

h2 = 3:5.

TABLE III
CAPACITANCE MATRIX CALCULATED BY THE SPICELINK, ODDM, AND OUR

METHOD (IN PICOFARADS)

because that larger scale system of linear equations is generated
in the BEM computation. However, the memory used by the
QMM accelerated BEM is becoming very close to that used

Fig. 11. Four crossovers above two bends embedded in seven dielectric layers.

Fig. 12. Top view of the layer with bends in Fig. 11, a = b = 13, S1 = 3:5,
S2 = 3.

TABLE IV
DIAGONAL ENTRIES OF THE CAPACITANCE MATRIES (IN PICOFARADS)

TABLE V
COMPARISION BETWEEN THE BEM WITHOUT THE QMM AND THE BEM WITH

THE QMM FOR THE NUMBER OF NONZERO MATRIX ENTRIES AND ITERATIONS
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TABLE VI
COMPARISION OF RAPHAEL, THE BEM WITHOUT THE QMM, AND THE BEM WITH THE QMM

by the ODDM for a larger and more complicated interconnect
structure, as shown in Table IV.

D. 3-D Structures Cut from a Real Design

We have also compared the BEM without QMM accelera-
tion and the BEM with QMM acceleration for three large 3-D
examples using five metal-layer technology. All these examples
have conductors distributed from layers 2 to 5, and include many
crossovers and bends. The first example has 34 pieces of con-
ductors, while the second and the third have 53 and 142 pieces
of conductors, respectively. Both BEMs, with QMM acceler-
ation or without QMM acceleration, have the same program
implementation. By assigning the QMM cutting number to be
(1, 1), we attain the conventional BEM, i.e., the BEM without
QMM acceleration. The cutting numbers in the QMM acceler-
ated BEM are different for the three examples. They are (3, 7),
(3, 5), and (6, 3), respectively. In these real structures, the master
conductors are specified. Thus, only one setting of bias voltages
is used for each example. In Table V, the number of nonzero co-
efficient matrix entries and the GMRES iteration number are
listed for these cases, whether or not using QMM acceleration.

This experiment is carried out on a Sun Ultra E450 and the
computational results are listed in Table VI. The corresponding
results of Raphael are also listed in Table VI. From the data, we
can see that the BEM with the QMM is about six times faster
than that without the QMM. The speed-up ratios of the BEM
with the QMM to the BEM without the QMM are close to the
ratios of nonzero entries in Table V. Thus, the analysis in Sec-
tion III-C is verified. It also can be found that the BEM with the
QMM uses approximately 1/5–1/3 of memory than the BEM
without the QMM uses. Though the boundary elements and
GMRES iteration number increases while using QMM acceler-
ation, the QMM method greatly reduces CPU time and memory
usage of BEM computation. The BEM with QMM acceleration
has a large speed-up ratio to Raphael, which is over 20 for these
three examples, and the discrepancies of capacitance between
both methods are within 2%.

VI. CONCLUSIONS

In this paper, the direct BEM has been accelerated by a new
method called the QMM and other effective techniques to com-
pute actual 3-D interconnect capacitance. The QMM acceler-
ated BEM has the following attractive features.

1) The QMM involves a simple idea of decomposing each
dielectric layer to a number of fictitious medium blocks.

Fig. 13. Trapezoid element P P P P whose hemlines are parallel to the
X-axis

It makes the coefficient matrix become a very sparse
matrix so that great computational speed-up is available.

2) Since the techniques of storing a sparse matrix and iter-
ative equation solution are usually used in 3-D capaci-
tance extraction, the reduction of nonzero matrix entries,
brought by the QMM, results in less memory for storing
the coefficient matrix. Therefore, the QMM accelerated
BEM usually reduce the memory usage for actual capac-
itance extraction.

3) The semianalytical method of boundary integration, suit-
able for planar structures, and the efficient organization
of the coefficient matrix, etc., are used to make the di-
rect BEM more effective to extracting 3-D interconnect
capacitance.

4) The QMM accelerated BEM inherits the advantages of
the BEM, and improves it to fit the 3-D computation. The
BEM with QMM acceleration is very suitable for an ac-
tual 3-D capacitor model with finite Neumann boundaries
and complex geometry.

Numerical results show that the computational sources used
by SpiceLink and Raphael are both at least ten times more
than those used by our method. The comparisons between our
method and the GIMEI in [8] and the ODDM in [10] show
that the computing time of three methods is about on the same
order. While processing an interconnect capacitor containing
more conductors or with more complicated geometry, the
QMM accelerated BEM would outperform the GIMEI and
ODDM in CPU time. In memory usage, the QMM accelerated
BEM is superior to the GIMEI, but inferior to the ODDM.

In the implementation of the QMM accelerated BEM, the pro-
gram will run times to get the total capacitance matrix, where

is the number of conductors. This may be improved by using
an idea of multiple-master computation, which would further
reduce the CPU time of our method. Besides, a more effective
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(A.4)

(A.5)

decomposition strategy of the QMM would also be considered
in a future work.

APPENDIX

The process of a VLSI circuit makes the regularity of inter-
connect geometry. After discretization, the boundary is com-
posed of rectangle, parallelogram, trapezoid, and triangle ele-
ments. For these shapes of element, a semianalytical method
will improve the speed and accuracy of the nonsingular integral.

Regarding a rectangle, parallelogram, and triangle as special
trapezoids, the trapezoid becomes the only shape of the dis-
cretized boundary elements in the actual interconnect capacitor.
Generally, the hemlines of the trapezoid are parallel to one coor-
dinate axis, without loss of generality, assume that it is -axis,
as shown in Fig. 13.

For the 2-D integral taken on the trapezoid element in Fig. 13

(A.1)

Making a transformation by adopting and as local coordi-
nate axes, we get

(A.2)

where ,
, and .

If the inner integral can be calculated by analytical integra-
tion, and is the primitive function of on variable , (A.2)
can be written as

(A.3)

where .
In the discretized BIE (4), the integral kernels are

and . Thus, the integration
in our method is on the kernels and , but omitting the
constants. We will analyze both kernels as follows.

For kernel , we get (A.4), shown at the top
of this page. For kernel , we get (A.5), shown
at the top of this page.

In the above two expressions, ( ) is the source point.
Using one-dimensional Gauss–Legendre integration, the value
of and can be obtained from (A.4) and (A.5).

In the above-mentioned one-dimensional Gauss–Legendre
integration, the number of integration points can be dynami-
cally determined according to the value range of . In our actual

3-D interconnect capacitance extraction, most of the boundary
elements are the rectangle element perpendicular to the coordi-
nate axis. For this case, i.e., , , and ,
the analytical integral formula can be further deducted. If
many integration points are required for a nonsingular integral,
the analytical formula can be used to calculate it, otherwise
the semianalytical formula is used. Our semianalytical and
analytical integral method not only improves the accuracy of
the nonsingular integrals, but also increases the computational
speed of them.
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